Posts Tagged ‘Extended’

Bisphenol A Content

Wednesday, June 2nd, 2010
Share This Post!

BisGMA, bisphenol A-glycidyl methacrylate is a common resin that carries trace amounts of BPA.  Bisphenol A (BPA) carries with it various risks recognized by the National Toxicology Program.

It is possible that high doses of bisphenol A during pregnancy and/or lactation can reduce survival, birth weight, and growth of offspring early in life.  BPA has also been shown to have estrogenic effects. *

According to internal analysis, Esstech’s bisGMA, Product Code X-950-0000, has one of the lowest BPA concentrations in the industry.

BPA Chart

EASE OF FORMULATION

To simplify formulations, X-950-0000 is available in pre-mixed solutions with Triethyleneglycol Dimethacrylate (TEGDMA).

BPA-FREE ALTERNATIVES

Esstech is constantly striving to provide customers with the most up-to-date and novel materials.  The f0llowing are resin “alternatives” that do not contain BPA.

X-850-0000, Urethane Dimethacrylate

  • Cures to create a hard glassy surface
  • Low color values
  • Excellent compatibility with light cure systems

X-726-0000, Extended UDMA

  • Increased flexibility
  • Enhanced fracture toughness

Esstech is constantly striving to provide customers with the most up-to-date and novel materials.  Contact us if you would like to discuss a certain material or to hear what we have in development.

* NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A.  National Toxicology Program, U.S. Department of Health and Human Services.  NIH Publication No. 08-5994, September 2008.


Share This Post!

X-726-0000 Serves as HEMA Alternative and Improves Degree of Conversion

Wednesday, March 31st, 2010
Share This Post!

Polymerization Shrinkage and Stress Development in Amorphous Calcium Phosphate/Urethane Dimethacrylate Polymeric Composites

J.M. Antonucci, W.F. Regnault, and D. Skrtic

Journal of Composite Materials, Feb 2010; vol. 44: pp. 355 – 367. DOI: 10.1177/0021998309345180

Abstract: This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (UDMA) (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated UDMA resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA, and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC, while not adversely affecting PS, PSSD, and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications.

…material research program supported by FDA, NIST, and ADAF. Generous contribution of UDMA, PEG- U, and HEMA monomers from Esstech, Essington, PA, USA, is gratefully acknowledged. Polymerization Shrinkage and Stress in ACP Composites 365 The authors also…

This version was published on February 1, 2010

Link: http://jcm.sagepub.com/cgi/content/abstract/44/3/355


Share This Post!

Esstech Inc. – Creating custom products & formulations to meet your unique needs!