Posts Tagged ‘bis-GMA’

PRODUCT SPOTLIGHT: bisGMA

Wednesday, July 31st, 2013
Share This Post!

BisGMA, X-950-0000

Item Code: X-950-0000
Product Name: Bisphenol A Glycidyl Methacrylate, BisGMA, Bisphenol A glycerolate dimethacrylate, Bisphenol”A”-bis-(2-hydroxypropyl)methacrylate, Bis-GMA
CAS#: 1565-94-2
INCI: Isopropylidenediphenyl Bisoxyhydroxypropyl Methacrylate

Bisphenol A Glycidyl Methacrylate, or bis-GMA is a high viscosity resin that has been used in dental formulations for years. Our bis GMA is manufactured with low levels of BPA or bisphenol A and low color. 

Performance Properties:

  • High Viscosity
  • Low color
  • Dilutes easily in typical solvents and diluents

Typical Applications:

  • Dental composite base resin
  • Core resin for “sculpting” nail gels
  • Promotes adhesion to fingernails

 

**** Contact Us FOR MORE INFORMATION OR SAMPLES! ****

.

Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.

.

.


Share This Post!

Product Spotlight: 70:30 BisGMA:TEGDMA

Friday, November 9th, 2012
Share This Post!

By popular demand, Esstech now offers a mixture of 70% BisGMA and 30% TEGDMA.  Click on the following links to learn more about our commercial blends:

 

Esstech offers a multitude of monomers including acrylates, methacrylates, diluents, crosslinkers, oligomers and more!  Contact us to discuss sourcing of any material or custom blends to match your application.  With large volume and high shear capability, there is a very good chance that Esstech can create a blend just right for you.

.

Contact us to request samples and/or additional information regarding any of our products.
.
.
.
Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE

 

 


Share This Post!

TPO Evaluated in Dental Composites

Monday, January 9th, 2012
Share This Post!

Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide

Luis Felipe J. Schneider, Larissa Maria Cavalcante, Scott A. Prah, Carmem S. Pfeifer, Jack L. Ferracane.  “Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide” Dental Materials.  December 2011:  Online

Summary:

This research presents trimethylbenzoyl-diphenyl-phosphine oxide (TPO) as an alternative to camphorquinone (CQ) photoinitiator systems for dental resins.  An immediate advantage is the low color of TPO in comparison to the strong yellow color of CQ. Testing using a spectrophotometer and differential scanning calorimetry (DSC) revealed that TPO had higher reactivity than CQ.  CQ exhibited higher absorbed power density, (PDabs) and better depth of cure.

Materials

Testing of each photoinitiator was performed using 50:50 formulations of 2,2-bis[4-2(2-hydroxy-3-
methacroyloxypropoxy)phenyl]propane (Bis-GMA, Esstech) and triethyleneglycol dimethacrylate (TEGDMA, Esstech).


LINK:  http://dx.doi.org/10.1016/j.dental.2011.11.014

Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.



Share This Post!

Optimal Diluent and Base Methacrylate Combinations

Thursday, September 15th, 2011
Share This Post!

Influence of the base and diluent methacrylate monomers on the polymerization stress and its determinants

N. R. G. Fróes-Salgado, L. C. Boaro, B. Pick, C. S. Pfeifer, C. E. Francci, M. M. Méier, R. R. Braga.  Journal of Applied Polymer Science.

Overview:

The correct pairing of methacrylate diluents and resins can optimize properties like polymerization stress, volumetric shrinkage, degree of conversion, maximum rate of polymerization, and elastic modulus in composite formulations.

Abstract:

The aim of this study was to evaluate the effect of the association between bisphenol-A diglycidyl dimethacrylate (BisGMA) or its ethoxylated version (BisEMA) with diluents derived from the ethylene glycol dimethacrylate (EGDMA), with increasing number of ethylene glycol units (1: EGDMA, 2: DEGDMA, 3: TEGDMA, or 4: TETGDMA), or trimethylol propane trimethacrylate (TMPTMA) or 1,10-decanediol dimethacrylate (D3MA) on polymerization stress, volumetric shrinkage, degree of conversion, maximum rate of polymerization (Rpmax), and elastic modulus of experimental composites. BisGMA containing formulations presented lower shrinkage and stress but higher modulus and Rpmax than those containing BisEMA. TMPTMA presented the lowest stress among all diluents, as a result of lower conversion. EGDMA, DEGDMA, TEGDMA, and TETGDMA presented similar polymerization stress which was higher than the stress presented by D3MA and TMPTMA. D3MA presented similar conversion when copolymerized with both base monomers. The other diluents presented higher conversion when associated with BisEMA. EGDMA showed similar shrinkage compared with DEGDMA and higher than the other diluents. The lower conversion achieved by TMPTMA did not jeopardize its elastic modulus, similar to the other diluents. Despite the similar conversion presented by D3MA in comparison with EGDMA and DEGDMA, its lower elastic modulus may limit its use. Rather than proposing new materials, this study provides a systematic evaluation of off the shelf monomers and their effects on stress development, as highlighted by the analysis of conversion, shrinkage and modulus, to aid the optimization of commercially available materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011


LINK:  http://onlinelibrary.wiley.com/doi/10.1002/app.34947/full

Article first published online: 1 SEP 2011.  DOI: 10.1002/app.34947


Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.





Share This Post!

Esstech Resins in Antibacterial Nanocomposite

Monday, July 11th, 2011
Share This Post!

Development of an antimicrobial resin—A pilot study

Catherine Fan, Lianrui Chu, H. Ralph Rawls, Barry K. Norling, Hector L. Cardenas, Kyumin Whang

Dental Materials.  Volume 27, Issue 4, Pages 322-328 (April 2011)

Summary

To demonstrate that silver nanoparticles (AgNPs) could be synthesized in situ in acrylic dental resins.

Methods: Light-cure (LC; bisphenol A glycidyl methacrylate, tetraethyleneglycol dimethacrylate, bisphenol A ethoxylate dimethacrylate blend) and chemical-cure systems (CC; orthodontic denture resin) were used to synthesize AgNPs using different concentrations of Ag benzoate (AgBz).

Results: Rockwell hardness for LC resins showed that resins could be cured with up to 0.15% AgBz, while the hardness of CC resins were unaffected in the concentrations tested. UV–Vis spectroscopy and transmission electron microscopy confirmed the presence of AgNPs in both LC and CC resins. Generally, CC resins had better distribution of and much smaller AgNPs as compared to LC resins overall. In some samples, especially in LC resins, nanoclusters were visible. An in vitro release study over four-weeks showed that CC resins released the most Ag+ ions, with release detected in all samples. However, LC resins only released Ag+ ions when AgBz concentration was greater than 0.1% (w/w). AgNP-loaded CC resins made with 0.2 and 0.5% (w/w) AgBz were tested for antibacterial activity in vitro against Streptococcus mutans, and results showed 52.4% and a 97.5% bacterial inhibition, respectively. Further work is now warranted to test mechanical properties and to optimize the initiator system to produce commercially useful dental and medical resins.

Significance:  Success in this work could lead to a series of antimicrobial medical and dental biomaterials that can prevent secondary caries and infection of implants.


LINK:  http://www.demajournal.com/article/S0109-5641%2810%2900475-6/abstract


Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.




Share This Post!

Polymerizing Thick Sections of BISGMA and TEGDMA

Monday, May 23rd, 2011
Share This Post!

Efficiency of 4,4′-bis(N,N-diethylamino) benzophenone for the polymerization of dimethacrylate resins in thick sections

Walter F Schroeder, Silvana L Asmussen, Wayne D Cook, Claudia I Vallo

Abstract

The efficiency of 4,4′-bis(N,N-diethylamino)benzophenone (DEABP) for the polymerization of dimethacrylate monomers in thick sections (12 mm) was studied. DEABP (λmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections.

Materials

The resins were formulated from blends of 2,2-bis[4-(2-hydroxy-3-
methacryloxyprop-1-oxy)phenyl]propane (bis-GMA)
and triethylene glycol dimethacrylate (TEGDMA) at mass fraction of 70:30.

Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.



Share This Post!

Reduced Shrinkage Stress with Optimized BisGMA/TEGDMA Ratios

Thursday, May 5th, 2011
Share This Post!

BisGMA/TEGDMA ratio and filler content effects on shrinkage stress

Flávia Gonçalve, Caio L.N. Azevedo, Jack L. Ferracane,Roberto R. Braga
Dental Materials, Volume 27, Issue 6, Pages 520-526 (June 2011)

Abstract

Objective

To investigate the contributions of BisGMA:TEGDMA and filler content on polymerization stress, along with the influence of variables associated with stress development, namely, degree of conversion, reaction rate, shrinkage, elastic modulus and loss tangent for a series of experimental dental composites.

Methods

Twenty formulations with BisGMA:TEGDMA ratios of 3:7, 4:6, 5:5, 6:4 and 7:3 and barium glass filler levels of 40, 50, 60 or 70wt% were studied. Polymerization stress was determined in a tensilometer, inserting the composite between acrylic rods fixed to clamps of a universal test machine and dividing the maximum load recorded by the rods cross-sectional area. Conversion and reaction rate were determined by infra-red spectroscopy. Shrinkage was measured by mercury dilatometer. Modulus was obtained by three-point bending. Loss tangent was determined by dynamic nanoindentation. Regression analyses were performed to estimate the effect of organic and inorganic contents on each studied variable, while a stepwise forward regression identified significant variables for polymerization stress.

Results

All variables showed dependence on inorganic concentration and monomeric content. The resin matrix showed a stronger influence on polymerization stress, conversion and reaction rate, whereas filler fraction showed a stronger influence on shrinkage, modulus and loss tangent. Shrinkage and conversion were significantly related to polymerization stress.

Significance

Both the inorganic filler concentration and monomeric content affect polymerization stress, but the stronger influence of the resin matrix suggests that it may be possible to reduce stress by modifying resin composition without sacrificing filler content. The main challenge is to develop formulations with low shrinkage without sacrificing degree of conversion.

LINK:  http://www.demajournal.com/article/S0109-5641%2811%2900020-0/abstract


Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.






Share This Post!

BisGMA – UDMA Composite with Nanosilica Fibers

Tuesday, March 29th, 2011
Share This Post!

Synthesis of Nanosilica Fillers for Experimental Dental Nanocomposites and Their Characterisations
Tuan Noraihan Azila Tuan Rahim1, Dasmawati Mohamad1*, Abdul Rashid Ismail1 and Hazizan Md Akil2

1School of Dental Sciences, Universiti Sains Malaysia,
2School of Material and Mineral Resources Engineering, Universiti Sains Malaysia

MATERIALS:

Tetraethyorthosilicate (TEOS), absolute ethanol, ammonia,  γ-methacryloxypropyl-trimethoxysilane (γ-MPS), acetic acid (CH3COOH), bisphenol A glycidyl methacrylate (BisGMA, Esstech), diurethane dimethacrylate (UDMA), triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), (2-dimethylaminoethyl) methacrylate (DMAEMA) and distilled water were used in this work. The chemicals were employed without any further purification.

ABSTRACT:

The aim of this study was to synthesise nanosilica fillers for use in the fabrication of experimental dental nanocomposites and to evaluate their properties,  including surface and mechanical properties. Monodispersed, spherical silica nanoparticles were synthesised via a sol-gel process, and a size range of 10–20 nm was obtained. Surface treatment of the nanosilica was carried out with the silane coupling agent γ-methacryloxypropyltrimethoxysilane (MPS) to reduce agglomeration of nanosilica. Experimental dental nanocomposites with two different filler contents, 30 and 35 wt%, were fabricated and polymerised with a light curing unit for 40 s. The surface morphology, surface roughness, flexural strength and elastic modulus were evaluated and compared. A nanocomposite with 35% filler content showed higher filler compaction, lower surface roughness and higher elastic modulus than a nanocomposite filled with 30% filler. However, the nanocomposite filled with 30% filler content showed higher flexural strength. Based on the results obtained, the synthesised nanosilica is a promising material for the fabrication of dental nanocomposites for tooth-filling applications.



LINK:  http://web.usm.my/jps/22-1-11/22.1.6.pdf


Journal of Physical Science, Vol. 22(1), 93–105, 2011
© Penerbit Universiti Sains Malaysia, 2011

Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.


Share This Post!

BISGMA & TEGDMA Form Polymer Matrix of Montmorillonite Nanocomposites

Monday, March 7th, 2011
Share This Post!

Preparation and characterization of light-cured methacrylate/montmorillonite nanocomposites

Veronica Mucci, Javier Perez, Claudia I Vallo


ABSTRACT

Polymer/clay nanocomposites were prepared from dimethacrylate monomers, commonly used in dental restorative resins, and an organically modified silicate (montmorillonite). The photopolymerization process was hardly affected by the presence of the silicate filler, and thus 2 mm thick samples containing 3 wt% clay were extensively cured. Transmission electron microscopy revealed that the montmorillonite platelets were either intercalated or exfoliated. Nevertheless, for all formulations, intermediate-sized aggregates of about 1 µm were present and their fraction increased as the amount of filler increased. The presence of the clay was found to have no major effect on the flexural modulus and compressive yield strength of the nanocomposites. Moreover, the water uptake of nanocomposites containing 3 wt% clay was about 10–15% higher than that of unfilled monomers. Modification of the clay surface with alternative organic cations is certainly necessary in order to achieve an optimal dispersion of the clay in the polymer matrix.

The methacrylate monomers used for the preparation of the nanocomposites were 2,2-bis[4-(2-methacryloxyethoxy)phenyl]pro-pane  (BisEMA; from Esstech, Essington, PA), triethylene glycoldimethacrylate and 1,6-bis(meth-acrylyloxy-


Article first published online: 14 OCT 2010.  DOI: 10.1002/pi.2935.  Copyright © 2010 Society of Chemical Industry

LINK:  http://onlinelibrary.wiley.com/doi/10.1002/pi.2935/full


Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.





Share This Post!

Properties of UDMA and Bis-GMA based Composites

Monday, February 28th, 2011
Share This Post!

Hydrogen bonding interactions in methacrylate monomers and polymers

Marianela T. Lemon, Melissa S. Jones, Jeffrey W. Stansbury
Department of Craniofacial Biology, University of Colorado School of Dentistry, Aurora, Colorado 80045

ABSTRACT

It is well appreciated that hydrogen bonding affects a variety of monomer and polymer properties. This study focused on Bis-GMA and urethane dimethacrylate (UDMA) to help elucidate how the strength and nature of
specific noncovalent interactions involved with these different functional dimethacrylate structures are expressed in the monomers and polymers. Hydrogen bonding interactions in monomers and comonomer mixtures as well as in appropriate model compounds were examined by FT-IR under ambient conditions, at elevated temperatures and in dilution studies. The investigation of hydrogen bonding extended to monomer viscosity, photopolymerization reaction kinetics, and polymer mechanical properties.

CONCLUSION

The strength of hydrogen bonding was shown not only to be greater for Bis-GMA compared with UDMA, but there is also greater contribution from intermolecular interactions that enhance the hydrogen bonding effects. While UDMA-based polymers reach significantly higher levels of conversion compared with Bis-GMA materials, the stronger hydrogen bonding reinforcement associated with Bis-GMA appears to provide for comparable mechanical strength properties. Depending on the hydrogen bond donor functionality of a monomer as well as its neighboring functional groups, overall monomer structure and comonomers used, hydrogen bonding can favorably affect polymerization reactivity and mechanical properties, even in materials that form highly crosslinked polymeric networks.


Wiley Periodicals, Inc. J Biomed Mater Res 83A: 734–746,2007

Link:  http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.31448/abstract



Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.





Share This Post!

Esstech Inc. – Creating custom products & formulations to meet your unique needs!