Properties of UDMA and Bis-GMA based Composites


Hydrogen bonding interactions in methacrylate monomers and polymers

Marianela T. Lemon, Melissa S. Jones, Jeffrey W. Stansbury
Department of Craniofacial Biology, University of Colorado School of Dentistry, Aurora, Colorado 80045

ABSTRACT

It is well appreciated that hydrogen bonding affects a variety of monomer and polymer properties. This study focused on Bis-GMA and urethane dimethacrylate (UDMA) to help elucidate how the strength and nature of
specific noncovalent interactions involved with these different functional dimethacrylate structures are expressed in the monomers and polymers. Hydrogen bonding interactions in monomers and comonomer mixtures as well as in appropriate model compounds were examined by FT-IR under ambient conditions, at elevated temperatures and in dilution studies. The investigation of hydrogen bonding extended to monomer viscosity, photopolymerization reaction kinetics, and polymer mechanical properties.

CONCLUSION

The strength of hydrogen bonding was shown not only to be greater for Bis-GMA compared with UDMA, but there is also greater contribution from intermolecular interactions that enhance the hydrogen bonding effects. While UDMA-based polymers reach significantly higher levels of conversion compared with Bis-GMA materials, the stronger hydrogen bonding reinforcement associated with Bis-GMA appears to provide for comparable mechanical strength properties. Depending on the hydrogen bond donor functionality of a monomer as well as its neighboring functional groups, overall monomer structure and comonomers used, hydrogen bonding can favorably affect polymerization reactivity and mechanical properties, even in materials that form highly crosslinked polymeric networks.


Wiley Periodicals, Inc. J Biomed Mater Res 83A: 734–746,2007

Link:  http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.31448/abstract



Sign up for our Monthly Email Update summarizing all new posts to Esstechinc.com, CLICK HERE.




Share This Post!